a2 United States Patent

US009449114B2

(10) Patent No.: US 9,449,114 B2

Roper et al. 45) Date of Patent: Sep. 20, 2016
(54) REMOVING NON-SUBSTANTIVE CONTENT ;,g%g,gg? gé igggg gya'tli et al.
)) ari
FROM A WEB PAGE BY REMOVING ITS 8,041,713 B2* 10/2011 Lawrencec...co..... 707/726
TEXT-SPARSE NODES AND REMOVING 8,538,980 BL* 9/2013 Dafar ..., GOGF 17/30
HIGH-FREQUENCY SENTENCES OF ITS 707/780
TEXT-DENSE NODES USING SENTENCE 5882; 8(1)222(7)? ii ggggg E?(lm‘ftﬁ alet al.
€ ¢ .
HASH VALUE FREQUENCY ACROSS A WEB 2005/0251536 Al 11/2005 Harik
PAGE COLLECTION 2008/0005094 Al* 1/2008 Cunnane GOGF 17/2745
. 2008/0040316 Al* 2/2008 Lawrence 707/3
(75) Inventors: John Roper, Sammamish, WA (US); 2010/0145952 A1* 6/2010 Yoon et al. 707/747
Dane Glasgow, Los AhOS, CA ([JS) 2011/0119571 A1* 5/2011 Decker et al. 715/205
OTHER PUBLICATIONS
(73) Assignee: PayPal, Inc., San Jose, CA (US)
Hwang, Yonghyun et al. “Structure-Aware Web Transcoding for
(*) Notice: Subject to any disclaimer, the term of this Mobile Devices”. Oct. 2003, IEEE *
patent is extended or adjusted under 35 Prasad, Jyotika et al. “CoreEx: Content Extraction from Online
U.S.C. 154(b) by 849 days. News Articles”. Oct. 30, 2008, ACM.*
Quasthoff, Uwe et al. “Corpus Portal for Search in Monolingual
(21) Appl. No.: 12/761,272 Corpora”. May 28, 2006, 5” International Conference on Language
’ Resources and Evaluation.*
10 Louvan, Samuel. “Extracting the Main Content from Web Docu-
(22) Filed: Apr. 15, 2010 ments”, Aug. 2009 Eindhoven University of Technology.*
(65) Prior Publication Data * cited by examiner
US 2011/0258528 Al Oct. 20, 2011
Primary Examiner — Cesar Paula
(51) Imt. ClL Assistant Examiner — Tyler J Schallhorn
GOGF 17/30 (2006.01) (74) Attorney, Agent, or Firm — Schwegman Lundberg &
GO6F 1721 (2006.01) Woessner, P.A.
GO6F 17/22 (2006.01)
(52) US. CL (57) ABSTRACT
CPC ..o Goor 2{)71/33 %5;05 é%%l; ?;/)2’ 2336127 0112/ 20118 A method and system for removing chrome from a web page
. . (o); (01) is provided. An example system includes a parsing module,
(58) Field of Classification Search a text density analyzer, a content node selector 206, and a
CPC e GOGF 17/30905; GOGF 17/218; GOGF text extractor. The parsing module may be configured to
17/2247 parse a web page into a tree structure. The text density
USPC s - 715/254 analyzer may be configured to determine a text density score
See application file for complete search history. value for each node from the tree structure. The content node
. selector may be configured to identify one or more nodes
(56) References Cited from the tree structure as content nodes based on their

U.S. PATENT DOCUMENTS

respective text density score values. The text extractor may
be configured to extract text from the content nodes only.

IDENTIFY ONE OR MORE NODES FROM THE TREE | — 440
STRUCTURE AS CONTENT NODES BASED ON THEIR
RESPECTIVE TEXT DENSITY SCORE VALUES

l

450

EXTRACT TEXT FROM THE CONTENT NODES

ASSOCIATED WITH THE SECOND VERSION OF THE

HTML DOCUMENT AND IGNORE NODES THAT WERE.
NOT IDENTIFIED AS CONTENT NODES

6,049,821 A * 4/2000 Theriault et al. 709/203
7,089,490 B1* 8/2006 Tan et al.ccoeoevnrennnn. 715/234 16 Claims, 6 Drawing Sheets
400
e
ACCESS AN HTML DOCUMENT |40
!
PARSE AN HTML DOCUMENT INTOATREE | *%°
STRUCTURE BASED ON HTML HIERARCHY
ASSOCIATED WITH THE HTML DOCUMENT
40
DETERMINE A TEXT DENSITY SCORE VALUEFOR |
EACH NODE FROM THE TREE STRUCTURE

US 9,449,114 B2

Sheet 1 of 6

Sep. 20, 2016

U.S. Patent

(NOILYDINddY NOILDIAQ3Yd
JONYINHOAYd
MO01S "9'3)
NOILVYDITddY DNINNSNOD

4 .\

A

001

L "OId

ori |\

W3LSAS FJOVHOLS

S39Vd 9IM

HIANOWIS

1X3L 103rdns JNOYHD
Chi ..\
W31SAS
dILNdNOD HIAALES
0Ll —

S39Vd 93aM

HITMVHED
g3aMm

oy MHOMLAN

U.S. Patent Sep. 20, 2016 Sheet 2 of 6 US 9,449,114 B2

200
e 204 .
PARSING MODULE a
TEXT DENSITY
ANALYZER
208
' - 206
CONTENT NODE SELECTOR
TEXT EXTRACTOR
210
~ 214 STRUCTURED CHROME [~
FILTER
BOILERPLATE FILTER |
212
r
216
-~ SENTENCE ANALYZER
COMMUNICATIONS
MODULE

FIG. 2

U.S. Patent Sep. 20, 2016 Sheet 3 of 6

US 9,449,114 B2

300

RECEIVE WEB PAGES RELATED TO A SUBJECT MATTER

310
/‘

I

CHARACTERIZED BY TEXT DENSITY ABOVE A
PREDETERMINED THRESHOLD VALUE AND EXTRACT
TEXT FROM THOSE NODES ONLY

'

RELATED TO THE SUBJECT MATTER TO IDENTIFY
BOILERPLATE LANGUAGE

'

l

PROVIDE THE TEXT THAT HAS BEEN STRIPPED FROM

APPLICATION

FIG. 3

THE BOILERPLATE LANGUAGE TO A CONSUMING /—

FOR EACH WEB PAGE, IDENTIFY HTML NODES / 320

330

ANALYZE TEXT EXTRACTED FROM THE WEB PAGES /

REMOVE THE BOILERPLATE LANGUAGE — 340

350

U.S. Patent Sep. 20, 2016 Sheet 4 of 6 US 9,449,114 B2

— 400
ACCESS AN HTML DOCUMENT — 410
420
PARSE AN HTML DOCUMENT INTO A TREE -
STRUCTURE BASED ON HTML HIERARCHY
ASSOCIATED WITH THE HTML DOCUMENT
430

DETERMINE A TEXT DENSITY SCORE VALUE FOR /
EACH NODE FROM THE TREE STRUCTURE

'

IDENTIFY ONE OR MORE NODES FROM THE TREE — 440
STRUCTURE AS CONTENT NODES BASED ON THEIR
RESPECTIVE TEXT DENSITY SCORE VALUES

v

EXTRACT TEXT FROM THE CONTENT NODES /_
ASSOCIATED WITH THE SECOND VERSION OF THE
HTML DOCUMENT AND IGNORE NODES THAT WERE

NOT IDENTIFIED AS CONTENT NODES

450

FIG. 4

US 9,449,114 B2

Sheet 5 of 6

Sep. 20, 2016

U.S. Patent

G Old

\@Nm

sws = (DI (LI

~._

zes —](L)NVAS N
/\vmm

s ~ T f
(9AIQ (9AIQ AId

reg Z \ N—zz5

TALH
/\hwm

0¢s .k

00S

<juy/>
<AIP/>]UBJUOD

9I0W BWOS S| 8I9H<AIP>
<AIp/>]UBlU02 ale Jey)
<uedss>spiom<ueds>
9WIOS ale alayi<AIp>
<AIp/>
<|n>
<ll/>cuonelreN<I|>
<l|/>LuonebineN<I|>
<|n>
<AIp>

<jwiy>

018 ~/

U.S. Patent Sep. 20, 2016 Sheet 6 of 6 US 9,449,114 B2

V/ 600
AN

PROCESSOR oEG
602 y > < ™ pispLay [810
624 —JINSTRUCTIONS
MAIN MEMORY ALPHA-NUMERIC
604 < > I NpuTDEVICE [612
624 —{INSTRUCTIONS
608 —
STATIC CURSOR
606 — '« »BUSlke——» CONTROL |—614
MEMORY
DEVICE
DRIVE UNIT
MACHINE - — 616
NETWORK READABLE
620 — [INTERFACE ——————— > ———— > MEDIUM | 622
DEVICE
INSTRUCTIONS] 624
N
626 SIGNAL
«— > GENERATION |—618
DEVICE

FIG. 6

US 9,449,114 B2

1

REMOVING NON-SUBSTANTIVE CONTENT
FROM A WEB PAGE BY REMOVING ITS
TEXT-SPARSE NODES AND REMOVING
HIGH-FREQUENCY SENTENCES OF ITS
TEXT-DENSE NODES USING SENTENCE

HASH VALUE FREQUENCY ACROSS A WEB

PAGE COLLECTION

TECHNICAL FIELD

This application relates to the technical fields of software
and/or hardware technology and, in one example embodi-
ment, to system and method for removing chrome from a
web page

BACKGROUND

A document that can be provided on the World Wide Web
and can be accessed through a web browser and displayed on
a computer screen is usually referred to as a web page. A
web page may be represented using a hierarchical markup
language, such as, e.g., HyperText Markup Language
(HTML) or eXtended HyperText Markup Language
(XHTML). A web page may include substantive textual
content (e.g., an article or a blog entry), and may also
include navigation to other web pages via hypertext links, as
well as advertisements. Information pertaining to layout,
typographic and color-scheme information may be provided
for a web page by Cascading Style Sheet (CSS) instructions
that may be embedded in the associated HTML file. An
HTML file associated with a web page may also include
computer code (e.g., JavaScript® script or Java®) that may
run on the client computer. Java and JavaScript are regis-
tered trademarks of Oracle, Inc. An HTML source for a page
dedicated to a magazine article, for example, may include
information that is not directly related to the article itself and
thus is not considered to be substantive content. Any content
that can be found in a file representing a web page that is not
substantive content may be termed “chrome” or “web page
chrome.”

BRIEF DESCRIPTION OF DRAWINGS

Embodiments of the present invention are illustrated by
way of example and not limitation in the figures of the
accompanying drawings, in which like reference numbers
indicate similar elements and in which:

FIG. 1 is a diagrammatic representation of example
architecture of method and system for removing chrome
from a web page;

FIG. 2 is a block diagram of a system for removing
chrome from a web page, in accordance with one example
embodiment;

FIG. 3 is a flow chart of a method for removing chrome
from a web page, in accordance with an example embodi-
ment;

FIG. 4 is a flow chart of a method for determining content
nodes, in accordance with an example embodiment;

FIG. 5 is a diagrammatic representation of an example
web page and a corresponding tree structure; and

FIG. 6 is a diagrammatic representation of an example
machine in the form of a computer system within which a set
of instructions, for causing the machine to perform any one
or more of the methodologies discussed herein, may be
executed.

DETAILED DESCRIPTION

In the following detailed description, numerous specific
details are set forth to provide a thorough understanding of

w

10

15

40

45

50

55

65

2

claimed subject matter. However, it will be understood by
those skilled in the art that claimed subject matter may be
practiced without these specific details. In other instances,
methods, apparatuses or systems that would be known by
one of ordinary skill have not been described in detail so as
not to obscure claimed subject matter.

Some portions of the detailed description which follow
are presented in terms of algorithms or symbolic represen-
tations of operations on binary digital signals stored within
a memory of a specific apparatus or special purpose com-
puting device or platform. In the context of this particular
specification, the term specific apparatus or the like includes
a general purpose computer once it is programmed to
perform particular functions pursuant to instructions from
program software. Algorithmic descriptions or symbolic
representations are examples of techniques used by those of
ordinary skill in the signal processing or related arts to
convey the substance of their work to others skilled in the
art. An algorithm is here, and generally, is considered to be
a self-consistent sequence of operations or similar signal
processing leading to a desired result. In this context,
operations or processing involve physical manipulation of
physical quantities. Typically, although not necessarily, such
quantities may take the form of electrical or magnetic
signals capable of being stored, transferred, combined, com-
pared or otherwise manipulated. It has proven convenient at
times, principally for reasons of common usage, to refer to
such signals as bits, data, values, elements, symbols, char-
acters, terms, numbers, numerals or the like. It should be
understood, however, that all of these or similar terms are to
be associated with appropriate physical quantities and are
merely convenient labels. Unless specifically stated other-
wise, as apparent from the following discussion, it is appre-
ciated that throughout this specification discussions utilizing
terms such as “processing,” “computing,” “calculating,”
“determining” or the like refer to actions or processes of a
specific apparatus, such as a special purpose computer or a
similar special purpose electronic computing device. In the
context of this specification, therefore, a special purpose
computer or a similar special purpose electronic computing
device is capable of manipulating or transforming signals,
typically represented as physical electronic or magnetic
quantities within memories, registers, or other information
storage devices, transmission devices, or display devices of
the special purpose computer or similar special purpose
electronic computing device.

Web pages related to a certain topic of interest may be
collected and analyzed in order to derive a conclusion or a
recommendation regarding the topic. The collected web
pages may contain, in addition to text relevant to the topic,
so-called chrome: a navigation panel (e.g., permitting a user
to navigate to other web pages available within the web site),
advertisement banners, and other objects that may not be
relevant to the topic of interest. Also, the relevant text—a
magazine article, for example—may conclude with a boil-
erplate sentence, such as a copyright notice, which would
not contribute substantively in the process of deriving a
recommendation based on the analysis of the text. Chrome
removal method and system are described. The method and
system may allow separating, automatically, relevant subject
matter content of a web page (e.g., an HTML page) from
items that also appear on the HTML page but may be
considered less relevant to the subject matter, such as
navigation, advertisements, and certain boilerplate informa-
tion.

In one example embodiment, the process of chrome
separation is performed in two stages. During the first stage,

US 9,449,114 B2

3

HTML hierarchy of each collected web page is examined to
determine which nodes can be reasonably ignored as not
likely to contain information relevant to the target subject
matter. This determination is based on the premise that
text-sparse nodes are less likely to include relevant infor-
mation than nodes associated with higher text density. Nodes
in the HTML hierarchy that have text density greater than a
predetermined threshold value are identified as content
nodes. After the content nodes are identified in a web page,
a module in the chrome removal system extracts text from
the content nodes. Text extracted from all collected web
pages as a result of the first stage processing is then analyzed
further. The further analysis may be viewed as the second
stage of chrome separation.

During the second stage, the extracted text is analyzed in
order to break it up into sentences, e.g., by determining
punctuation marks, carriage returns, and other printable and
non-printable characters that may be indicative of an end or
a beginning of a sentence. Each sentence is then hashed. The
chrome removal system may then parse the hashed sen-
tences to detect any boilerplate language by identifying
sentences that occur suspiciously frequently across all col-
lected web pages. It will be noted that method and system for
chrome removal may be utilized advantageously to remove
chrome from web pages represented by HTML as well as
other hierarchical mark-up languages.

Example architecture 100 of method and system for
removing chrome from a web page may be described with
reference to FIG. 1. As shown in FIG. 1, a chrome remover
system (also referred to as merely chrome remover) 112 may
be provided at a server computer system 110. The chrome
remover 112 may be configured to receive web pages
represented in a hierarchical mark-up language (such as,
e.g., HIML or XHTML), identity chrome and provide
subject text (that has been substantially freed from chrome)
to a consuming application 120. Web pages may be provided
to the chrome remover, e.g., as a result of activities per-
formed by a web crawler 130, or from a storage system 140.
The chrome remover 112 may be implemented as a stand-
alone computer application or it may be provided as a
computer module within a larger computing program or
computer system. An example chrome remover may be
described with reference to in FIG. 2.

FIG. 2 is a block diagram of a system 200 configured to
remove chrome from web pages, in accordance with one
example embodiment. The system 200 may also be referred
to as a chrome remover 200. Various modules shown in FIG.
2 may be implemented as software, hardware, or a combi-
nation thereof.

As shown in FIG. 2, a chrome remover 200 includes a
parsing module 202, a text density analyzer 204, a content
node selector 206, and a text extractor 208. The parsing
module 202 is configured to parse a web page into a tree
structure based on HTML hierarchy associated with the web
page. The text density analyzer 204 is configured to deter-
mine a text density score value for each node from the tree
structure. The content node selector 206 is configured to
identify one or more nodes from the tree structure as content
nodes based on their respective text density score values.
The text extractor 208 is configured to extract text from the
content nodes. While the text extractor 208 extracts text
from the content nodes, any nodes that were not identified as
content nodes are ignored.

As mentioned above, a web page may include CSS or
JavaScript® instructions embedded in the associated
HTML. These instructions, as well as HTML comments are
easily identifiable as data that is not subject matter content.

10

20

25

30

35

40

45

50

55

60

4

Embedded CSS or JavaScript® instructions, as well as
HTML comments may be referred to as structured chrome.
The chrome remover 200 may include a structured chrome
filter 210 configured to remove structured chrome from web
pages. The parsing module 202, the text density analyzer
204, the content node selector 206, the text extractor 208,
and the structured chrome filter 210 may be utilized during
the first stage of the chrome removal process that results in
extracting text from those nodes in an HTML tree that have
been identified as content nodes. It will be noted that while
text is extracted from content nodes, HTML tags themselves
are not extracted as the tags are not regarded as text that is
relevant to the subject matter associated with the collected
web pages.

The chrome remover 200 also includes modules that are
utilized during the second stage of chrome removal. These
modules are a sentence analyzer 212 and a boilerplate filter
214. The sentence analyzer 212 may be configured to
analyze text extracted from content nodes of web pages
related to certain subject matter and to identify one or more
sentences indicative of boilerplate language (e.g., copyright
notices). The boilerplate filter 214 may be configured to
remove from the extracted text the one or more sentences
indicative of boilerplate language to produce subject text.

Also shown in FIG. 2 is a communications module 216.
The communications module 216 may be configured to
receive or access web pages (e.g., web pages collected with
the use of the web crawler 130 of FIG. 1 or from the storage
system 140 of FIG. 1. The communications module 216 may
also be used to provide the subject text to the consuming
application 120 of FIG. 1.

An example method utilizing a chrome remover may be
described with reference to FIG. 3. FIG. 3 is a flow chart of
a method 300 to remove chrome from web pages, according
to one example embodiment. The method 300 may be
performed by processing logic that may comprise hardware
(e.g., dedicated logic, programmable logic, microcode, etc.),
software (such as run on a general purpose computer system
or a dedicated machine), or a combination of both. In one
example embodiment, the processing logic resides at the
server system 110 of FIG. 1 and, specifically, at the system
200 shown in FIG. 2.

As shown in FIG. 3, the method 300 commences at
operation 310, when the chrome remover 112 of FIG. 2
receives web pages related to a specific topic or subject
matter. For each web page, the chrome remover 112 iden-
tifies HTML nodes characterized by text density above a
predetermined threshold value and extracts text from those
nodes (operation 320). At operation 330, the extracted text
is analyzed to determined whether it contains boilerplate
language (e.g., copyright notices) so that such boilerplate
text can be removed (operation 340) prior to providing the
relevant content to a consuming application (operation 350).

Example operations that may be performed in order to
determine which HTML nodes of a web page may be
considered content nodes (the process referred to as stage
one in the description above) may be described with refer-
ence to FIG. 4. FIG. 4 is a flow chart of a method 400 to
remove chrome from web pages, according to one example
embodiment. The method 400 may be performed by pro-
cessing logic that may comprise hardware (e.g., dedicated
logic, programmable logic, microcode, etc.), software (such
as run on a general purpose computer system or a dedicated
machine), or a combination of both. In one example embodi-
ment, the processing logic resides at the server system 110
of FIG. 1 and, specifically, at the system 200 shown in FIG.
2.

US 9,449,114 B2

5

As shown in FIG. 4, the method 400 commences at
operation 410, when the chrome remover 112 accesses a web
page. At operation 420, the parsing module 202 of FIG. 2
parses the web page into a tree structure based on the HTML
hierarchy associated with the web page. For each node in the
tree structure, the text density analyzer 204 of FIG. 2
determines a text density score value (operation 430). At
operation 440, those nodes having text density score value
above a predetermined threshold value are identified as
content nodes. The text extractor 208 of FIG. 2 extracts, at
operation 450, text from content nodes but not from nodes
that were not identified as content nodes.

For example, the parsing module 202 may access a web
page represented by HTML code such as shown in FIG. 5 in
block 510. Each pair of tags in the HTML code shown in
block 510 corresponds to a node in a tree structure 520. The
node associated with the first “DIV” tag in the web page
(that corresponds to node 522 in the tree structure 520) does
not contain any text. Its immediate child (node 524 that
corresponds to the nested tag “UL” in the HTML code
shown in block 510) also does not contain text, and its
remote children (nodes 526 and 528) each contain one word
(“Navigation”). The node 530 associated with the second
“DIV” tag contains 6 words, its child (node 532) contains 1
word, and the third “DIV” tag contains 5 words. It will be
noted that tags themselves are not counted as words.

Atext density score value for a subject node is determined
as the sum of the number of words directly associated with
the subject node plus the number of words contained in
adjacent nodes—nodes that are children, siblings or a parent
of the subject node. The number of words contained in the
nodes that are children, siblings or a parent of the subject
node may be weighted prior to being added to the number of
words directly associated with the subject node. Different
weights may be associated with the parent nodes, sibling
nodes, and child nodes. The number of words contained in
an adjacent node that is located closer to the subject node in
the hierarchy may contribute more heavily to the text density
score value for the subject node than the number of words
contained in an adjacent node that is located further away in
the hierarchy from the subject node.

Thus, the text density score for the node 522 is the number
of words contained in the node 522 (zero) plus the number
of words contained in its parent node 521 (zero), plus the
number of words contained in the node 524 weighted by a
predetermined coefficient (zero), plus the number of words
contained in the nodes 526 and 528 weighted by a prede-
termined coeflicient (if the coefficient is 0.5, the value
contributed by each one of the nodes 526 and 528 is 0.5,
adding to 1), plus the number of words contained in the
nodes 530 and 534 weighted by a predetermined coefficient.

Returning to FIG. 4, when the text density analyzer 204
of FIG. 2 determines respective text density values for each
node in the HTML tree structure, each value is compared to
a threshold value. Only those nodes for which a text density
value is above the threshold value are identified. as content
nodes operation 440). At operation 450, the text extractor
208 of FIG. 2 extracts text from content nodes and ignores
any text associated with nodes that were not identified as
content nodes. As explained above, the extracted text may be
processed further to remove any boilerplate language and
provided to a consuming application, where the text may be
analyzed still further to generate information regarding the
subject matter associated with the source web pages.

FIG. 6 shows a diagrammatic representation of a machine
in the example form of a computer system 600 within which
a set of instructions, for causing the machine to perform any

10

15

20

25

30

35

40

45

50

55

60

65

6

one or more of the methodologies discussed herein, may be
executed. In alternative embodiments, the machine operates
as a stand-alone device or may be connected (e.g., net-
worked) to other machines. In a networked deployment, the
machine may operate in the capacity of a server or a client
machine in a server-client network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a
tablet PC, a set-top box (STB), a Personal Digital Assistant
(PDA), a cellular telephone, a web appliance, a network
router, switch or bridge, or any machine capable of execut-
ing a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also
be taken to include any collection of machines that indi-
vidually or jointly execute a set (or multiple sets) of instruc-
tions to perform any one or more of the methodologies
discussed herein.

The example computer system 600 includes a processor
602 (e.g., a central processing unit (CPU), a graphics
processing unit (GPU) or both), a main memory 604 and a
static memory 606, which communicate with each other via
a bus 608. The computer system 600 may further include a
video display unit 610 (e.g., a liquid crystal display (LCD)
or a cathode ray tube (CRT)). The computer system 600 also
includes an alpha-numeric input device 612 (e.g., a key-
board), a user interface (UI) navigation device 614 (e.g., a
cursor control device), a disk drive unit 616, a signal
generation device 618 (e.g., a speaker) and a network
interface device 620.

The disk drive unit 616 includes a machine-readable
medium 622 on which is stored one or more sets of instruc-
tions and data structures (e.g., software 624) embodying or
utilized by any one or more of the methodologies or func-
tions described herein. The software 624 may also reside,
completely or at least partially, within the main memory 604
and/or within the processor 602 during execution thereof by
the computer system 600, with the main memory 604 and
the processor 602 also constituting machine-readable media.

The software 624 may further be transmitted or received
over a network 626 via the network interface device 620
utilizing any one of a number of well-known transfer
protocols (e.g., Hyper Text Transfer Protocol (HTTP)).

While the machine-readable medium 622 is shown in an
example embodiment to be a single medium, the term
“machine-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-readable medium” shall also be taken to include
any medium that is capable of storing and encoding a set of
instructions for execution by the machine and that cause the
machine to perform any one or more of the methodologies
of embodiments of the present invention, or that is capable
of storing and encoding data structures utilized by or asso-
ciated with such a set of instructions. The term “machine-
readable medium” shall accordingly be taken to include, but
not be limited to, solid-state memories, optical and magnetic
media. Such media may also include, without limitation,
hard disks, floppy disks, flash memory cards, digital video
disks, random access memory (RAMs), read only memory
(ROMs), and the like.

The embodiments described herein may be implemented
in an operating environment comprising software installed
on a computer, in hardware, or in a combination of software
and hardware. Such embodiments of the inventive subject
matter may be referred to herein, individually or collec-

US 9,449,114 B2

7

tively, by the term “invention” merely for convenience and
without intending to voluntarily limit the scope of this
application to any single invention or inventive concept if
more than one is, in fact, disclosed.

Thus, a method and system for removing chrome from
web pages has been described. Although embodiments have
been described with reference to specific example embodi-
ments, it will be evident that various modifications and
changes may be made to these embodiments without depart-
ing from the broader spirit and scope of the inventive subject
matter. Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method comprising:

accessing a web page, the web page represented by a
hierarchical mark-up language;

parsing the web page into a tree structure based on a
hierarchy associated with the web page;

for each node from the tree structure, determining a text
density score value, the text density score value calcu-
lated as a sum of a word count associated with a node
and weighted word counts associated with adjacent
nodes from the tree structure, an adjacent node from the
adjacent nodes comprising a sibling of the node;

identifying those nodes from the tree structure for which
a text density value is above the threshold value as
content nodes;

extracting text from the content nodes associated with the
web page and ignoring nodes that were not identified as
content nodes;

breaking up the extracted text and further text into a
plurality of sentences;

hashing each sentence from the plurality of sentences;

calculating frequency of each sentence in the extracted
text and the further text; and

identifying sentences from one or more sentences having
a frequency value above a frequency threshold value as
indicative of boilerplate language.

2. The method of claim 1, comprising:

providing the extracted text associated with the web page
to a sentence analyzer; and

removing from the extracted text the one or more sen-
tences indicative of boilerplate language to produce
subject text.

3. The method of claim 2, further comprising providing

the subject text to a consuming application.

4. The method of claim 1, wherein the further text is
associated with one or more further web pages, the web page
is associated with a first web page and a further web page
from the one or more further web pages is associated with
a second web page.

5. The method of claim 1, comprising removing struc-
tured chrome from the web page prior to the parsing of the
web page into the tree structure.

6. The method of claim 5, wherein structured chrome
comprises embedded Cascading Style Sheets (CSS).

7. The method of claim 1, wherein the web page is
represented by HyperText Markup Language (HTML).

8. The method of claim 7, wherein a node from the nodes
that were not identified as content nodes is associated with
navigation, advertising, or HTML comments.

9. A computer system comprising:

a parsing module, implemented using one or more pro-
cessors, to parse, using the at least one processor, a web
page into a tree structure based on hierarchy of a
hierarchical mark-up language associated with the web

page;

10

15

20

25

30

40

45

50

55

60

8

a text density analyzer, implemented using one or more
processors, to determine, using the at least one proces-
sor, a text density score value for each node from the
tree structure, the text density score value calculated as
a sum of a word count associated with a node and
weighted word counts associated with adjacent nodes
from the tree structure, an adjacent node from the
adjacent nodes comprising a sibling of the node, a
sibling of the node or a child of the node;
a content node selector, implemented using one or more
processors, to identify, using the at least one processor,
those nodes from the tree structure for which a text
density value is above the threshold value as content
nodes;
a text extractor, implemented using one or more proces-
sors, to extract, using the at least one processor, text
from the content nodes associated with the web page
and ignoring nodes that were not identified as content
nodes; and
a sentence analyzer, implemented using one or more
processors, to, using the at least one processor:
break up the extracted text and further text into a
plurality of sentences,

hash each sentence from the plurality of sentences,

calculate frequency of each sentence from the plurality
of sentences in the extracted text and the further text,
and

identify a sentence from the plurality of sentences
having a frequency value above a frequency thresh-
old value as indicative of boilerplate language.

10. The system of claim 9, comprising:

a boilerplate filter to remove from the extracted text
sentences indicative of boilerplate language to produce
subject text.

11. The system of claim 10, further comprising a com-
munications module to provide the subject text to a con-
suming application.

12. The system of claim 9, wherein the further text is
associated with one or more further web pages, the web page
is associated with a first web page and a further web page
from the one or more further web pages is associated with
a second web page.

13. The system of claim 9, comprising a structured
chrome filter to remove structured chrome from the web
page.

14. The system of claim 13, wherein structured chrome
comprises embedded CSS.

15. The system of claim 9, wherein the web page is
represented by HyperText Markup Language (HTML).

16. A machine-readable non-transitory storage medium
having instruction data to cause a machine to perform
operations comprising:

parsing a web page into a tree structure based on a
hierarchy of a mark-up language associated with the
web page;

determining a text density score value for each node from
the tree structure, the text density score value calculated
as a sum of a word count associated with a node and
weighted word counts associated with adjacent nodes
from the tree structure, an adjacent node from the
adjacent nodes comprising a sibling of the node;

identifying those nodes from the tree structure for which
a text density value is above the threshold value as
content nodes; and

US 9,449,114 B2

9

extracting text from the content nodes associated with the
web page and ignoring nodes that were not identified as
content nodes, the extracted text associated with the
web page;

breaking up the extracted text and further text into a
plurality of sentences;

hashing each sentence from the plurality of sentences;

calculating frequency of each sentence from the plurality
of sentences in the extracted text and the further text;
and

identifying a sentence from the plurality of sentences
having a frequency value above a frequency threshold
value as indicative of boilerplate language.

#* #* #* #* #*

10

10

